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An approximate method is proposed for solving (Sections 1, 4) the plane probletn con-
cermned with the impression of a punch (taking into account Coulomb friction forces) on
a linearly deforming foundation of a more general type than the one investigated in
[1 and 2], The method is essentially based on a new integral relationship which is de-
rived herein (Section 2) for Jacobi polynomials,

In the process, we also obtain the solution (Section 3) to an integral equation which is
more general than the one arising from the plane contact problem which takes into
account friction forces and for which the modulus of elasticity of the half-space is a
power function; it is also more general than the integral equation arising from the con-
tact problem investigated by Arutiunian and Manukian [3], The solution is obtained by
a more direct and elementary method than the one used by the above mentioned authors,

1, Consider a linearly deforming foundation subjected to a compressive force P
applied through a rigid punch of width £ (we are considering a plane problem) and sur-
face shape given by J/ =@ (X). In addition, the punch is subjected to a sliding force
T'= 4P, where X is the coefficient of friction between the punch and the foundation,

The problem is to find p(x) and g (X), the normal and shear contact stresses, respect-
ively, assuming that the contact surface is equal to the punch width and thatg(X) = D(X).
For the mmemual formulation of this problem, it is necessary that we know the vertical
displacements of the surface points of the foundation

w*(z) = 00 (), »* (2) = B30 () (8y, 8, = const) 1.1

resulting from the action of vertical and horizontal unit forces, respectively, applied at
the origin (X =0, } =0). If the foundation is elastic, in virtue of the reciprocal theorem,
the displacement »* (z) can be determined as horizontal displacements due to a unit

vertical force,
Once the function w* and »*, are known, the problem can be formulated in terms of

an integral Eq,
1
{Ome—n) fimE—alp@d=1e) 0<=<LiE=8+0+sE) A2
[
Here & and O are the settlement and the angle of rotation of the punch, respectively,

As in previous work [1 and 2], we will assume that the influence functions may be re-
presented by Fourler integrals, i, e,
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e} oo
vy () = _:[_ S q’o_t(‘). cos tz dt, v (z) = _i_. S (p_lt(L).sin tzdi, P (0)=0 (1.3)
0 0

However, unlike [1 and 2], we will assume a more general asymptotic representation
Pu(t)=t"[1+0 (™)) Og<vLL, e>0, m=0,1) (1.4)

The reason for the generalization is the desire to include in the general theory found-
ations in the form of a half-space with an elastic modulus whose variation is given by

E=Ey  (O0<v<Y) (1.5)

but with constant value of Poisson's ratio |4, Utilizing the results of [4] and taking into
account the reciprocal theorem, we find that

1 sgnzr __(1——p.2)'rC .oy
vo(x)-v|x|\., v () = P C 01_'—_—(11'—1?)5", sin <~
1 —p? n
o= — O cos T (1.6)

T4+ v+ NITH+h A +v—T)] _ _ "
(C— 29T (2 + ) ’ 7‘[““)(1 i )])

In this case, the integral Eq, (1,2) takes the form

=f(2) (.7)

_S,"

Letting V0 and noting (1, 6), we obtain the integral equation for the plane contact
problem including Coulomb friction forces for the usual half-space [1 and 2]
l

2(1—pw) 1 (1 4+ p) (1 — 2p) B _
§[ nE lnl:z-—s'+ Sk sgn (z S)]p(S)ds f(z) + const (1.8)

Taking note of (1. 6) and of Formulas 3, 761 in [5], we see that the elastic half-space
whose modulus is of the form (1, 5) is a particular case

o (t) = a1 (1 -+ v) sec 1fp vmt®, 1 (t) = x['1 (v) cosec 1/, vat¥

of the previously introduced linearly deforming foundation characterized by Formulas
(1.1),(1.3) and (1, 4),
Utilizing the representation (1, 3) and Formulas 3, 761 in [6]. we can write

nwe (z) =T (v) cos o v |z [ —mly(x), nvy(2) =T (v)sint/, va | 2 [~ sgn z — nly (x) (1.9)
Moreover, the functions £ ; (%) which are defined by the integrals

lo(T)?_lw v __Qo(t)]costz dt
Lz) = § [t 1 (t)]sin tz ¢t

will be, in view of the asymptotic representation in (1, 4), at least continuous functions,
Taking into account (1. 9), the integral Eq, (1,2) may be written in the form

(1.10)
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i

'v) ¢ 7 7 s
;V 5[61 cos%t - kB, sin-vzl sgn (v — S)?P (s) [z _Ci s =
\ i T —
ll
:.—/(:r)—}—S[ﬂllo (@ — )+ ki (z — )] p(s)ds  (0<z <) (1.11)

0

From the above it follows that if the inversion formula for integral equations of the
type (1. 7) were known then the integral Eq, of the first kind (1, 11), which is here under
consideration, could be reduced to an equation of the second kind with a continuous
kernel,

Here it is helpful to note that Arutiunian and Manukian [3], in solving the plane cont-
tact problem while taking into account friction for a nonlinearly deforming foundation
(taking into account creep), obtained the integral Eq,

1

(lasgne =0 kel 4w (1)

le—s"

Y]

which is similar to the one obtained here (for an inhomogeneous elastic half-space),
Eq. (1.12) was solved by the authors by a combination of particular procedures, obtain~
ing the solution for a special right-hand side (equal to unity) and utilizing the general
formulas of Krein [6].

Galin [7] solved integral Eq, (1, 7) by reducing it to a boundary value problem in an-
alytic functions, and obtained the solution in terms of the principal value of certain in-
tegrals, A solurion of the same form and utilizing the same method but for a clever
generalization of the equation was obtained by K, D. Sakaliuk [8],

Below, an entirely different method from those of the above mentioned authors is util-
ized, and two procedures are given for solving an integral equation of a somewhat more
general form than (1,7) and (1,12),

2. Consider the integral Eq,
!

(I pa=je)  O<e<LOSIKD @

0
By a change of variables

z=1§ y=20m, 1p (18) = @ (§) (2.2)

the above is reduced to the form
1

asgn (€ — b1°
(LGB g man=r0n  ©<E<H 2.3)
0
It turns out that for this integral Eq. there are (with proper weight functions) a pair of

orthonormal Schmidt systems [9] which are very simply related to the Jacobi polynomials

Pm“’ﬁ (). This mathematical fact is expressed by the relation
blesgnE—m) 4 BPEI A —2n) A (), Pt A 28)
5 |£_-n|v1|1—4(1 —n* n= m! sin:w(a—}-b)“’
0

(2.4)

(4 —_—]/1—2c_os:rwa‘°+a'2°, a =(b—a){a-b) Re 4>0, 0<Rev<1)
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The remaining parameters are related by

sinn. (x—v) _ a®, or = i .
sin s . n A
Here, that single-valued branch of the arcsine is chosen for which 0 < Rea <1,

Proof of (2, 4) is based on Formula

fesgn(€—m+8)° _ B0 T (@) ;0 28
@rople—ar  Fora—v o &0
min (§, 1)

S 2 ds (Re (1 +v—a) < 1)
I 4, = : Y -
(E Tl) J (a_s)a(n_s)l V=0

Let us prove this formula, For this purpose, we evaluate the integral contained therein,
taking separately the case £<1) and the case N<E, Obvious changes of variables and
utilization of the known [5] integral representation of Gauss' hypergeometric function
lead to Formula

rvft—ao) Fl—a+v,vil—a-t+vi§/n)

N (’V —a “I‘ 1) E’a—vnl—a-}v (Eo < 7]) (2 7)
[ = r(vL(a—v) F(a, v;a; /&) (<D )
I‘(q) Tl]—aErl.

Upon expressing Gauss® functions in the above in terms of elementary functions ( [5],
P. 1054) (and upon straightforward transformation into gamma functions) we obtain

_T(v)T (@ —v) g *p*1 s, 1<%
TG w= P jg—qp {sinn(a—-v) cosecna, E<1n 2.8)

On the other hand, the following Eq. clearly holds

lasgn(€—m) +b)° 1 {1. n<t

(@+b°1E—nf" ~ iE—nf |a°% E<n

Taking into account the above together with (2,7) and (2, 4), we arrive at the proof
of (2, 6),
Let the left-hand side of (2, 4) be denoted by J(X ). Then, from (2, 6), we can write

7 (&) = T @) a + by S LR ot P8 i ga v 1 ds
F@)I'a—w) (1 —n)* (a._.s)a(.q_s)l-aw

Now, inverting the order of integration (the legitimacy of this step follows from the
bounds on the parameter) in a similar manner to Copson's method, we obtain

3
=L@ (a+ 5% s
J (&) T T =) B(E_ = I(s)ds 2.9)
0

Here

1 -1, v— .
I ¢ ProLYR (4 2n)dy
(s) = 1 — p)* l—a+v (2.10)
JA —m* 7 (n —s)
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In evaluating the last integral, the following relations are used:

m PRPU—22)=(1+a)pF (a4 B+m41, —m 1+ 2)
1

LA T ()T (e)
A— F(a,B; 7itz)dt = WF(M B T+¢& 2) 2.11)

0
rqd—a)F(v+m, —m; a; z) =
=Tll—a—m)(l—a+V)pF(vim —m 1—a++v, 1—2z)

These relations are, respectively, corollaries of formulas 8, 962, 7, 512(8) and 9,131)
in [5].

Using the first formula in (2,11) and making the substitution N =8 + £(£ -8) in (2. 10),
we obtain

(a)m Fv4m, —m;q, 1+t(1—s))
I(s)= § v “ —n*

Utilization of the third formula in (2, 11) and the substitution 1-7=T lead to
1

— m V=
I(a)==( m:) 1—a +v)mSmF(v+m, —m; 1 —a+v; (1 —s)v)dy
0

Whence it follows from application of the second and third formulas in (2, 11) that

Al —a +Vim (Vim

I(s)= mBsin (@ — v) F(v+m, —m; v, s)

Substituting the obtained result into (2, 9) and letting 8 = £, we obtain

1
(@) (Vm(l—a+VIm(a+B)° \ F(m4v, —m; v tf)
T & =5 (@) T (@—v)sinx (a— v) S 1 —1)® at

Finaily, use of the second and first formulas in (2, 11) yields

7 (E) n(a + b) (‘V)m Pv—a. 1—-1(1 _ 25)
ml sin na

By means of analytic continuation, the requirement that Re (1+ V-0 )<1, which was
made in (2, 6) may now be eliminated,

Taking note of (2, 5), we conclude that the right-hand side ofthe lastrelation coincides
with the right-hand side of (2, 4), completing its proof.

The proven relation permits the use of the following procedure for solving integral
Eq. (2.3). Using the orthogonality property of Jacobi polynomials, the right-hand side
of (2, 3) is expanded into the series

fB) = ) eaPr® * (1 —26)

=0
Then the solution of mtegral Eq, (2.3), in view of (2, 4) will have the form
Cp 8in VRl PRl v (1 —28)

v =,§0 A (et P BB
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Such a form of the solution might be more convenient than a reduction to quadrature,

3, Formula (2, 5), obtained in the preceding section also permits the reduction to
quadrature of integral Eq, (2,2). The previously mentioned Copson's method [10]
quickly leads to the desired result, Indeed, from (2, 6), the left-hand side of (2,2) may
be rewritten as

1
T (a) (a4 b)° Ea—v§ s dsS "9 () dn = f (I€) (34)

TML@—v) " JE—s° J@a—o=

Thus, the integral Eq, under consideration is reduced to two Abel type iterated integr.
als . Employing the known (see, for example, [8]) inversion formulas

x x
% (t) dt _ _sinp.u i g(t)dt
OS (Z—t)“' —g(z)l X(’") - n S (z_ t)l..p.
1 1
 b(hdr _ smlm d q(t)de
§ =@ bE@=— ’S(,__,)x..‘
we obtain from (3.1)
1 s
B d( _s™ds d(f@ene _ sinnal' (v)(a 4-5)~°
q’(g)=—'gl-¢ dg § (8 — )3~ ds §,(s —t)l“dt (B_ ar(@)T({ —a+v) )

Hence, taking into account (2, 2), the solution of integral Eq, (2, 1) takes the form

1
B d sds d( t=%f (2) dt
P(x)'——‘—zl—a -d;é (5— )= ‘Eo (s—t)l"“

or, upon integrating by parts

® (1) IS O’ (s) ds )

B
P (z) = - ((l _ z_)u-v —x (s __z_)u.—-v (32)

R P _?_x 2 f(t) dt _ sinnal' (v) (a +8)°
(mm_m d"s @—tp b= nr(i—a+v)l‘(a))

The parameter (X is as defined in (2, 5),

This result may also be obtained in a different way, In this method, (2, 4) is employed
in order 10 obtain a solution of integral Eq, (2.1) with the right-hand side equal to unity,
and then we apply Krein's formulas [6], Such a procedure is used in [3] in order 1o solve
(1.12), but there, a different procedure is used to obtain the solution to the problem with
the right-hand side equal to unity,

Clearly, in order to solve integral Eq, (1,7) of the plane contact problem in which
friction forces are taken into account and the half-space has an elastic modulus given
by (1.5), we have toset 0 =1, a = k8, and b = 6,v7, in Eqgs, (32) and (2, 5), with
0, as defined by the Formulas in (1.6), In order to obtain the solution to integral Eq.
(1.12), the problem of Arutiunian and Manukian,welet ¢ =1 — v, ¢ =gq, and b = q,.

4, The relation (2. 4) obtained in Section 2, which may also be written in the form
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!
S [asgn (¢ —y) -+ D1°Py* (1)
I r—y |vy1-r1 (1 . ”)1-v

dy = PPy~ (%)
(1)
Am (v -1, v— - P2, %] p
(cs= 1, pm=7_ﬂm%, Pt () = PXL % (20 1), Py (@) = P AR -2x/l))
permits the use of an effective approximate method in solving integral Eq, (1,11), at the
same time solving the contact problem with friction for a linearly deforming foundation.
For this purpose, the functions in (1, 10) are approximated by polynomials
n n
lo () = ) ajfa, hiz)= Y| et (4.2)
7=0 J=0
If the functions in (1, 10) are analytic, then Expressions in (4, 2) can be truncated
Maclaurin series,
The function J(X) in (1,11) is expanded in terms of Jacobi polynomials, and a sol-
ution is sought in the form of a similar series, i, e,

oo

[}
Pt (y) X
f@= ) AmPm (@),  PW)= D A e (4.3)
m=0 m=0 Yy (l - y)
Substitute (4,2) and (4, 3) into (1, 11); multiply the resultant equation by
Py (2) 2 (I — )" (k= 0,1, 2..)
and integrate over the interval (0, £), As a result of orthogonality of the Jacobi poly-
nomials, we obtain

N—k N 4
, k —9p 2 4
M= D X, 3 0Bk +kkAk(k<N—2n+1, X=3 k>1v) (4.4)
m=0 j=k+m
Here .
ng = 01050, 02341 = kezajl (] =0, 17 2: LI n‘)1
!
[P~ (x)2de _ 0 Td—a4v-4m)I (a4 m)
}”’"=S AV (l—ap2 2 mi(v2m)T(v+m)
0
B, =0 (G—k< m)
P (™ ik (—4y iIT(d —a+v+j—r)T@a+k T —at+vim
Boi= " Hml(—k—mir—mITA+v+7+k—r)T{A+vimr)
r=m .
(i —k>m)
The last formula is easily obtained from
I .
X UG (x__y)]xvl—uym—l . . .
ij = S S a2 (1= g P, () Ppyt (y) dx dy

00
if we take into account Formula 7, 391(4) in [5]. Thus, the problem is reduced to the
solution of a system of algebraic Eqgs, (4, 4) with a triangulated coefficient matrix,
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