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An approximate method is proposed for solving (Sections 1,4) the plane problem con- 

cerned with the impression of a punch (taking into account Coulomb friction forces) on 

a linearly deformtng foundation of a more general type than the one investigated in 
[1 and 2J. The method is essentially based on a new integral relationship which is de- 
rived herein (Section 2) for Jacobf polynomials. 

In the process, we also obtain the solution (Section 3) to an integral equation which is 
more general than the one arising from the plane contact problem which takes into 
account friction forces and for which the modulus of elasticity of the half-space is a 
power function: it is also more general than the integral equation arising from the con- 

tact proWem invesdga’ted by Arutiunian and Manukiari PI. The solution is obtained by 

a more direct and elementary method than the one used by the above mentioned authors. 
1, Consider a linearly deforming foundation subjected to a compressive force P 

applied through a rigid punch of width R (we are considering a plane problem) and sur- 
face shape given by z/ = g(x). In addition, the punch is subjected to a sliding force 

iT= W, where k is the coefficient of friction between the punch and the foundation. 

The problem is to find p(& and q(X), the normal and shear contact stresses, respect- 
ively, assuming that the contact surface is equal to the punch width and thatq(X) = J@(x), 

For the tnat&ma+al formulation of this problem, it is necessary that we know the vertical 
displacements of the surface points of the foundation 

*W = %M W, u1* (2) = 6sY (3) (e,, 91 = const) (1-i) 

resulting from the action of vertical and horizontal unit forces, respectively, applied at 
the origin (X = 0, 1/ = 0). If the foundation is elastic, in virtue of the reciprocal theorem, 
the d&placement n* (z) can be determined as horizontal displacements due to a unit 

vertical force. 
once the function us* and ~0, are known. the problem can be formulated in terms of 

an integral Eq, 

1 

s 
[&uo (= - ~)fkepl1(2*-S)1p(s)da=f(E) (O(z<l, f(~)=~+e~-k+((c)) (1.2) 

0 

Here 6 and 0 are the settlement and the angle of rotation of the punch. respectively. 
As in previous work p and 23, we will assume that the influence firncdons may be re- 

presented by Fourier integrals, i. e. 
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cos tx dt , rpo (0) = 0 (1.3) 

IJ 0 

However, unlike n and 21, we will assume a more general asymptotic representation 

‘Pm P) = t” [i + 0 (01 (O,<v<i, s>o, m=o, i) (i-4) 

The reason for the generalization is the desire to include in the general theory found- 

ations in the form of a half-space with an elastic modulus whose variation is given by 

E = E,yY (0 5 v < 1) (1.5) 

but with constant value of Poisson’s ratio l-l. Utilizing the results of 143 and taking into 
account the reciprocal theorem, we find that 

1 
00 (2) = - 

sgn x (I- CL7 YC w 
YIXJY ’ 

VI(X) = 3; e~=(,+_)~, sin;! P 

e = (l--WC w 
2 - vE 

cos - 2 (i-6) ” 

c c = r 11 + l/2 (2 + v + r)l r 11 + ‘la (1 + v - ??I ‘is 

2+?cr (2 + v) 
) r=[(i+v) I- VCL ( i--P )I ) 

In this case, the integral Eq. (1.2) takes the form 

1 

S[ -+ +e&sgn(x-s) I p (s) ds 
- 
Ix-sl’ =flx) 

u 
(i.7) 

Letting v+O and noting (1.6), we obtain the integral equation for the plane contact 
problem including Coulomb friction forces for the usual half-space n and 23 

1 

SI 2(1-P) In 1 
TCE ix---s I 

+ (1 + P) (1 - 9) 
2E 

sgu (x - ‘9) P (8) ds = f (x) + conat (1.8) 
0 1 

Taking note of (1.6) and of Formulas 3. ‘761 in [5], we see that the elastic half-space 
whose modulus is of the form (1.5) is a particular case 

cp0 (t) = nP (1 + v) set 1/z we”, T1 (t) = e-1 (v) cosecl/2 vnt’ 

of the previously introduced linearly deforming foundation characterized by Formulas 

(1. I),& 3) and (1.4). 
Utilizing the representation (1.3) and Formulas 3.761 in [53, we can write 

npo (2) = r (v) cos *j2 VSI 1 x 1-v -do(~), rr;s(x) = r(v) sinl/, vn I x psgn x -nh(~) (1.9) 

Moreover, the functions 4 i (X) which are defined by the integrals 

20 (x) = j_ O3 
h(x) S[ tv -q,(t) costx dt 

II 1 qh (t) sin tz t 0 (1.10) 

will be, in view of the asymptotic representation in (I. 4), at least continuous functions. 
Taking into account (1.9). the integral Eq. (1.2) may be written in the form 
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= 1 (x)+ \ [0,1,, (x - s) + k&t, (x - s)J p(s) ds (0 < z d 4 (1.11) 
. 
6 

From the above it follows that if the inversion formula for integral equations of the 
type (1.7) were known then the integral Eq. of the first kind (1.11). which is here under 

consideration, could be reduced to an equation of the second kind with a continuous 

kernel. 

Here it is helpful to note that Arutiunian and Manukian p]. in solving the plane cont- 
tact problem while taking into account friction for a nonlinearly deforming foundation 

(taking into account creep), obtained the integral Eq. 

1 

l [a sgn (x - s) + ae] s 1-v 

Ix--sIY 
P (s) ds = f (xl 

0 

(1.12) 

which is similar to the one obtained here (for an inhomogeneous elastic half-space). 

Eq. (1.12) was solved by the authors by a combination of particular procedures, obtain- 

ing the solution for a special right-hand side (equal to unity) and utilizing the general 

formulas of Krein fi]. 

Galin p] solved integral Eq. (1.7) by reducing it to a boundary value problem in an- 
alytic functions, and obtained the solution in terms of the principal value of certain in- 

tegrals. A solution of the same form and utilizing the same method but for a clever 

generalization of the equation was obtained by K. D. Sakaliuk 181. 
Below,an entirely different method from those of the above mentioned authors is util- 

ized, and two procedures are given for solving an integral equation of a somewhat more 

general form than (1.7) and (1.12). 

2. Consider the integral Eq. 

I’[*sgflI a 2 - !I/) + b15 
P(Y) dY = f (x) (Ufx<l, O<Y<I) (2.4) 

0 Ix--_I" 

By a change of variables 

x = Ii, y= 1% ll--“P (15) = cp (8 (2.2) 

the above is reduced to the form 

(2.3) 

It turns out that for this integral Eq. there are (with proper weight functions) a pair of 
orthonormal Schmidt systems [9] which are very simply related to the Jacobi polynomials 

P,ulp(z). This mathematical fact is expressed by the relation 

: [a sgn (E - ?l) + b]VZ-l* y--a (1 - 2Tl) dy__ *‘lTc (Y),PF’ a-1 (I- 25) 

I 
- 

1 E - q ppz (1 --Qa-” rn! sin nv (a + b)+ 
(2.4) 

0 

(A =fi - 2 cps nva*’ + a*” , a* = (b - a) (a -/- b)-1, Re.d>O, O<Rev<l) 
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The remaining parameters are related 

sin rr, (~2 - v) = a 0 
sin fiz l ’ 

Here, that single-valued branch of the 

Proof of (2.4) is based on Formula 

a lineary-deforming foundation 

bY 
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or 3-z _L Sin-’ 
sin .w 

;I .-I 
(2.5) 

arcsine is chosen for which 0 < Re a< 1, 

(2.6) 

min CC, n) 

s 

s"-1 as 

I(& tl) = 

0 
(4.__ py (q - p+a 

FW++-&)<1) 

Let us prove this formula. For this purpose, we evaluate the integral contained therein, 

taking separately the case 5< q and the case ?I< 5. Obvious changes of variables and 
utilization of the known [5] integral representation of Gauss’ hypergeomeaic function 

lead to Formula 

/ 

l?(v) r (I- u) F (1 -u + v, v; 1 -a + v; 4 / q) 
P (v - a + I) la-“tll-aSv 

(4 < tl) 

r(E* rl) = r(v)r(a-v) F(a, v; a; q/f) 
(2.7) 

r(a) rl’-a5a 
(q<E) 

Upon expressing Gauss’ functions in the above in terms of elementary functions ( [S], 
p. 1054) (and upon straightforward transformation into gamma functions) we obtain 

I% rl) = 
r p) r (a - V) f+atf-l 1, rl<f 

r (a) sinn(a-v)coseczca, c<q (2.8) 

On the other hand, the following Ecf. clearly holds 

[a sgn (F - 11) + bla 1 

{ 

1. rl-=CE 
(a+bpI~--ql” = ic--1” Qea* E<rl 

Taking into account the above together with (2.7) and (2.4), we arrive at the proof 

of (2.6). 
Let the left-hand side of (‘2.4) be denoted by J(X ). Then, from (2.6). we can write 

s”-l dr 

(5 -+(q -q--a+” 

Now, inverting the order of integration (the legitimacy of this step follows from the 
bounds on the parameter) in a similar manner to Copson’s method, we obtain 

Here 
(2.9) 

? 
I(s) = s ~g-1~ v-a (1 _ zq) ;Is 

B (1 - qy-’ (q - sy-a+” (2.10) 
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In evaluating the last integral, the following relations are used: 

ml P~B(i-Z22)=(l+a),F(a+B+n+1, -mm; 1-j-a; r) 

F (a, p; 7; tz) dt = r 0) JJ (8) 
- ql-r r(Y+ e) WA r+c 4 (2.11) 

r (1 - a) F (v + m, - m; a; z) = 

=r(l -a-m) (1 -a + v),F (v -+ m, -m; 1 -a + v; 1 - Z) 

These relations are, respectively, corollaries of formulas 8.962,7.5X(8) and 9. la) 

in IS]. 
Using the first formula in (2.11) and making the substitution ‘II = s + &(a -s) in (2. lo), 

we obtain 

(4nl l 
1 (a) = _ml s F (v + m, - m; a; 1 + t (I- s)) 

pa+v 1 _ t)a-v at 

0 ( 

Udlieation of the third formula in (2.11) and the substitution 1 - t= 7 lead to 

1 

Z(s)=(k$.(i-a +v)mS ’ 
v-a 

o (1 ---p+J 
F(v+m, -mn; l-a+v; (i-ss)r)dr 

Whence it follows from application of the second and third formulas in (2.11) that 

Substituting the obtained result into (2.9) and letting S = cti, we obtain 

1 

J (EJ = 
srr(a)(v),(i--+%,(a+ Wa 

S ml*~(v)l?(a-v)sind(a-v) o 
F(m+v, -mm; v; 43 dt 

(1 - t)” 

Finally, use of the second and first formulas in (2.11) yields 

JW = R (a + w ma p-1 =-I(, - 2,r) 

it! sin 51a m 

By means of analytic continuation, the requirement that Re (l+ V-a)<l, which was 

made in (2.6) may now be eliminated. 
Taking note of (2.5), we conclude that the right-hand side ofthelastrelationcoincides 

with the right-hand side of (2.4), completing its proof. 
The proven relation permits the use of the following procedure for solving integral 

Eq. (2.3). Using the orthogonality property of Jacobi polynomials, the right-hand side 
of (2.3) is expanded into the series 

co 
f (Q) = x cJy* a-1 (1 - 2E) 

Then the solution of integral Eq. ;?3). in view of (2.4) will have the form _ 

cpW= ; 
c, sin arvn! pa--L v---b (i _ 2~) n 

rr=o An (a + VW, Cd (a - Cl”--’ 
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Such a form of the solution might be more convenient than a reduction to quNlrature. 
3. Formula (2.5), obtained in the preceding section also permits the reduction to 

quadrature of integral Eq. (2.2). The previously mentioned Copson’s method PO] 

quickly leads to the desired result. Indeed, from (2. S), the left-hand side of (2.2) may 

be rewritten as 

Thus, the integral Eq. under consideration is reduced to two Abel type iterated integr, 
als . Employing the known (see, for example, 18-J) inversion formulas 

= x(t) dt 
x 

S o p_ty =gw 
sinv d 

x (4 = 7 x s g 0) dt 
o (l! - tp 

‘. q(t)dt 
1 

I x (t_x)P = qw 
we obtain from (3.1) 

( B = ek Jtar (v) (a + b)d 
G(a) r(i -a +v) 1 

Hence, taking into account (2.2), the solution of integral Eq. (2.1) takes the form 
I 

sl-” ds d 
I 

s t-f (t) dt 

(s- zy-” x0 (s -t)l-a 

or, upon integrating by parts 

i? 
P (4 = gl--a ( @ (1) L w (s) as s (Z- zgb-” -= (I -x)“-” ) (3.2) 

dr 
CD (z) = d--v -& s t-j ‘(t) dt B = sin nar (v) (a + !I)~ 

0 P - t)l-a ’ J# (1 - a + v) T (a) 

The parameter CI is as defined in (2.5). 

This result may also be obtained in a different way. In this method, (2.4) is employed 
in order to obtain a solution of integral Eq, (2.1) with the right-hand side equal to unity, 
and then we apply Krein’s formulas @I, Such a procedure is used in [3J in order to solve 

(1.12). but there, a different procedure is used to obtain the solution to the problem with 
the right-hand side equal to unity. 

Clearly, in order to solve integral Eq. (1.7) of the plane contact problem in which 
friction forces are taken into account and the half-space has an elastic modulus given 
by (1,5), we have to set cs = I, u = k 8,. and IJ = 0,v-i, in Eqs. (92) and (2.5). with 
8 J as defined by the Formulas in (1.6). In order to obtain the solution to integral Eq. 
(1.12). the problem of Amtiunian and Man&an, we let u = 1 - v, a = aI and b = a,. 

4. The relation (2.4) obtained in Section 2, which may also be written in the form 
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permits the use of an effective approximate method in solving integral Eq. (1.11), at the 

same time solving the contact problem with friction for a linearly deforming foundation. 
For this purpose, the functions in (1.10) are approximated by polynomials 

If the functions 

Maclaurin series. 

djOr2j , I1 (x) z (4.2) 
j=O j=O 

in (1.10) are analytic, then Expressions in (4.2) can be truncated 

The function f(X) in (1.11) is expanded in terms of Jacobi polynomials, and a sol- 

ution is sought in the form of a similar series, i, e. 

(4.3) 

Substitute (4.2) and (4.3) into (1.11); multiply the resultant equation by 

Pk- (x) xy--a (I - 5)a-l (k = 0, 1, 2...) 
and integrate over the interval (0, k ). As a result of orthogonality of the JacoBi poly- 
nomials, we obtain 

h,p,X, = E” x, kfN=h+l, X,,=4”’ 
pk 

k>N (4.4) 

m=O j=k+m 

Here 
C*j = 810j0, c 2j+l = k02ajl (i=O, 1,2, . ..n). 

h 

m 
=’ s [Pm-Wl* dx =41I_ w--++++m)r(u+m) 

xK-* (I - z)l” 2 m!(V+2m)r(Y+m) 
0 

B,;=O (i--k<4 

B k_(-‘) 

m+k i--h’ 

mj - --22 

(-i)‘jl r(i---a+v+j-- r)r(a+k)r(l-czfvfm) 
la-3 k! n! (j-k - r)l (r - m)lr(1+Y+j+k-r)1‘(2+Y+m+r) 

r=l7l 

(i-k>m) 

The last formula is easily obtained from 

(L-x)“K(l- y)K-Y 
P,- (r) Pm+ (y) dx dg 

if we take into account Formula 7.391(4) in [SJ. Thus. the problem is reduced to the 
solution of a system of algebraic Eqs. (4.4) with a triangulated coefficient matrix. 
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